

The final conference of the POLNOR-LEADER project

Introduction to path planning algorithms for adaptive pollution sampling

M. Kosior, P. Przystałka, W. Panfil, A. Sivertsen

Agenda

- 1) The problem
- 2) Environment modeling
- 3) Adaptive Path Planning algorithm (APP)
- 4) Global Path Planner (GPP)
- 5) Local Path Planner (LPP)
- 6) Summary & conclusions

The problem

- Develop a path planning algorithm for autonomous flight
 & adaptive pollution sampling of a HALE UAV
- Solve a multi-criteria optimization problem of an autonomous flight constrained by the UAV limitations and its environment
- Compare chosen path planning & optimization algorithms
- Verify the path planner in simulation*
- Integrate the planner with the UAV and the ground control station

* addressed in another presentation

4

Adaptive Path Planning algorithm

Adaptive Path Planning algorithm

Adaptive PP = Global PP + Local PP

Global Path Planner (GPP)

- Provides one rough merged path for LPP
- Computation intensive & not responsive
- Implements general optimization algorithms (ACO_R, I-GWO, PSO, GA)
- Minimizes energy expenditure
- Uses a wind model (wind map)
- Runs offboard only

VS Local Path Planner (LPP)

- Provides smooth collision-free path for 2 poses
- Rapid computations & responsiveness
- Implements stochastic collision avoidance algorithms (RRT, RRT*, BiRRT)
- Lacks wind and energy models
- Runs onboard or offboard

6

Global Path Planning – minimization problem

Local Path Planning – rapid re-planning

Summary & conclusions

- APP comprises two sub-algorithms: Global PP & Local PP
- GPP currently implements 4 optimization algorithms: ACO_R, I-GWO, PSO & GA
- GPP generates energy-optimized obstacle free path connecting the measurement sites
- LPP enables rapidly computing the obstacle free path, even on the embedded hardware, but the path is not energy-optimal
- LPP implements 3 algorithms: RRT, RRT* & BiRRT

Related publications

- **Kosior** M.: *Model-Based Adaptive Path Planning Algorithm for Unmanned Aerial Vehicles*. PhD thesis. Silesian University of Technology, Faculty of Mechanical Engineering, 2022.
- Kosior M., Przystałka P., Panfil W.: Wind Forecast Map for Adaptive Path Planning with an Unmanned Aerial Vehicle. Metody komputerowe 2022. Student scientific conference. Silesian University of Technology, 2022, pp. 69-72.
- **Kosior** M.: *A Glimpse into the Adaptive Path Planner for a UAV*. Proceedings of the 3rd Polish Conference on Artificial Intelligence. Gdynia Maritime University, 2022, pp. 94-77.

